25 Watt

Grau Elektronik

25 LPB 036 M24

 $U_{E Nenn} = 36 V$ $U_{A Nenn} = 24 V$ $I_{A Nenn} = 1,0 A$

SYMBOL	PARAMETER	TESTBEDINGUNGEN	MIN	TYP	MAX	EINHEIT
EINGANG						
U _E	Eingangsspannungsbereich	Dauer	25,2		45,0	V
		t ≤ 0,1 sec.	21,6		25,2	V
		t ≤ 1,0 sec.	45,0		50,4	V
U _{E min}	Abschaltung		20,5		21,3	V
U _{E max}	Abschaltung		51,0		55,0	V
U _{Enable}	Enable Funktion	Wandler Ein:				
	Bezugspotential: - U _E	Enable = high (+ U _E) oder offen				
	max. anliegende Spannung 70V	Wandler Aus: Enable = low (- U _E)	0		0,8	V
		U _{Enable} ≤ 0,5 V, I ≤ + 1 mA*				
	Stand by Strom	21,6 V ≤ U _E ≤ 50,4 V, Enable = high		17	30	mA
I _E	Eingangsstrom Leerlauf	$U_E = 50.4 \text{ V}, I_A = 0 \text{ A}$			20	mA
	Nennlast	$U_E = 36 \text{ V}, I_A = 1.0 \text{ A}$		0.8		Α
	Nennlast	$U_E = 21.6 \text{ V}, I_A = 1.0 \text{ A}$		0,6	1,5	Α
∫i² dt	Einschaltstromintegral	$U_{E} = 50,4 \text{ V}$			5	A²s
I _{E max}	Einschaltstrom bei	I _A = 1,0 A			2,0	Α
	$U_E \ge U_{E \text{ min}}$, $U_{E \text{nable}} = \text{high } (+ U_E) \text{ oder offen}$	Δt≤1 ms			2,0	_ ^
	Eingangssicherung		2 A Picofuse)	
C _E	Eingangskapazität Wandler				20	μF
	Externe Leitungsinduktivität				50	μH
	Verpolschutz	Paralleldiode + Sicherung		1,5 KE 56 A		

AUSGANG: Leistungsteil

P _{A Nenn}	Ausgangsdauerleistung	21,6 V ≤ U _E ≤ 45,0 V		25		W
U _{A Nenn}	Ausgangsspannung, werkseitig eingestellt	$21,6 \text{ V} \le U_E \le 45,0 \text{ V}, I_A = I_{A \text{ Nenn}}$	+ 23,9	+ 24,0	+ 24,1	V
ΔU _A	Regelgenauigkeit statisch	21,6 V \leq U _E \leq 50,4 V 0 A \leq I _A \leq 1,0 A T _U = -40°C + 70°C 10 Min + 85°C	± 3,0 % U _{A Nenn}		V	
$\Delta~U_{A~dyn.}$	Lastausregelung dynamisch	21,6 V \leq U _E \leq 50,4 V Pulslast: 40 - 90 - 40 % x I _A			± 300	mV
t _{dyn}	Ausregelzeit dynamisch	21,6 V \leq U _E \leq 50,4 V Pulslast: 50 - 100 - 50 % x I _A		2	ms	
U _{A rms}	Restwelligkeit	21,6 V ≤ U _E ≤ 50,4 V Nennlast BW 300 kHz	$6 \text{ V} \le \text{U}_{\text{E}} \le 50,4 \text{ V}$		150	mV
U _{A ss}	Spikes siehe Zeichnung	21,6 V ≤ U _E ≤ 50,4 V Nennlast BW 20 MHz			300	mV
t _{ein}	Hochlaufzeit	21,6 V \leq U _E \leq 45,0 V, 0 A \leq I _A \leq 1,0 A ohmsche Last U _E \geq U _{E min} U _{Enable} = high (+ U _E) oder offen	20		100	ms
t _{aus}	Netzausfallüberbrückungszeit	25,2 V ≤ U _E ≤ 45,0 V 0 A ≤ I _A ≤ 1,0 A	-	-	-	
	Überspannungsschutz	$21.6 \text{ V} \le \text{U}_{\text{E}} \le 50.4 \text{ V}$ $0 \text{ A} \le \text{I}_{\text{A}} \le 1.0 \text{ A}$	-	-	-	
I _A	Ausgangsstrom	21,6 V ≤ U _E ≤ 50,4 V	1,0			Α
	Grundlast	21,6 V ≤ U _E ≤ 50,4V	-			Α
	Ausgangsstrombegrenzungseinsatz von I _A	21,6 V ≤ U _E ≤ 50,4 V	1,1			Α
I _{AK}	Ausgangskurzschlussstrom	Kurzschluss zwischen + U_A und - U_A 21,6 V $\leq U_E \leq 50,4$			2,0	Α
C _A	Ausgangskapazität Wandler	Ausgang		0,3		mF

ALLGEMEINE DATEN

f	Schaltfrequenz	U _E = 36 V, I _A = 1,0 A		135	kHz
η	Wirkungsgrad	P _A ≥ 0,7 x P _{A Nenn}	85	88	%
	MTBF (SN 29500)	$U_E = 36 \text{ V}, I_A = 1.0 \text{ A}, T_U = +40^{\circ}\text{C}$		750 000	h
	Leerlauf-, Kurzschlussfestigkeit			Dauer	

^{* -} Angabe: Strom fließt in das Gerät hinein, + Angabe: Strom fließt aus dem Gerät heraus

 Grau Elektronik GmbH
 Badhausweg 14
 Tel.: +49 0 72 48/92 58 0
 www.grau-elektronik.de
 Rev. 1.4

 76307 Karlsbad
 Fax: +49 0 72 48/92 58 10
 info@grau-elektronik.de
 03.02.22

Erstelldatum: 22.06.2005

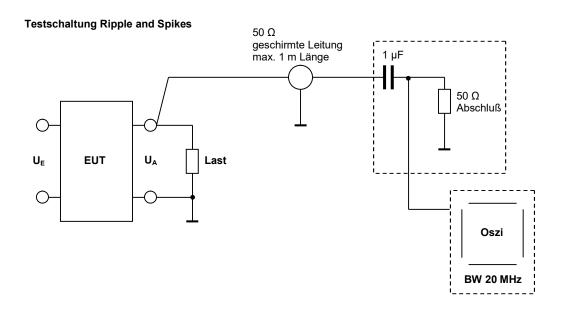
25 Watt

25 LPB 036 M24

SYMBOL	PARAMETER	TESTBEDINGUNGEN	MIN	TYP	MAX	EINHEIT
SICHERH	EIT / ABMESSUNGEN					
	Kriechstrecken, Luftstrecken	Primär – Sekundär	2,0			mm
		Primär – Masse *	2,0			mm
		Sekundär – Masse	1,0			mm
	Isolationsprüfspannung	Primär – Sekundär			2100	V _{DC}
	Stückprüfung:	Primär – Masse			1500	V _{DC}
	Rampenfunktion 2 s - 3 s - 2 s	Sekundär – Masse			750	V _{DC}
	Anschlüsse	Eingang und Ausgang	A	Anschlusspir	าร	
	Geräteschutzklasse, Schutzart			I, IP 00		
	Abmessungen	BxHxT	3	30 x 21,5 x 7	70	mm
	Befestigung	Leiterkartenmontage		4 x M 2,5		
	Gewicht			125		g

UMGEBUNGSBEDINGUNGEN

Tu	Arbeitstemperaturbereich	EN 50155 Klasse: Tx	- 40	+ 85	°C
T _{Lager}	Lagertemperaturbereich		- 40	+ 85	°C
	Kühlung		Konvektion		
	Feuchte	EN 50155, IEC 60571	75% jährliches Mittel, 95% 30 Tage		
	Vibration / Schock	IEC 61373, IEC 68-2-27, BN 411002 Kat. I 3 Schocks je Achse	50 m / s² , 30 ms		


EMV

Störaussendung **	Leitungsgebunden und gestrahlt	EN 50121 - 3 - 2: 2001
Störfestigkeit **	ESD	6 kV / 8 kV
	EN 61000 - 4 - 2	Störverhalten - B -
	Hochfrequentes Feld	20 V / m 80 MHz 1 GHz
	EN 61000 - 4 - 3	Störverhalten - A -
	Burst	Level 3 asym., sym.
	EN 61000 - 4 - 4	Störverhalten - A -
	Surge	2 kV asym. / 1 kV sym.
	EN 61000 - 4 - 5	$R_i = 42 \Omega$
		Störverhalten - A -
	HF - Einströmung	10 V _{eff} , R _i = 150 Ω
	EN 61000 - 4 - 6	Störverhalten - A -

STANDARDS / NORMEN

	Angewandte	EN 50155: 2000	BN 411 002	EN 50124 - 1: 1996	EN 50121 - 3 - 2: 2001	IEC 60571
	Normen:	SN 29 500	prEN 50 121 - 1	prEN 50125 - 1	EN 60068 - 2 - 6, 227	EN 61000 - 4 - 26
		IEC 571	IEC 61373	EN 60721 - 3 - 5	EN 61373	EN 60529

Technische Daten bezogen auf: - 40° C \leq T_U \leq + 70° C, 25,2 V \leq U_E \leq 45,0 V, sofern nicht anders spezifiziert. * Masse = Halbleiter Al Kühlsteg **) im geschlossenen Gehäuse

Grau Elektronik GmbH

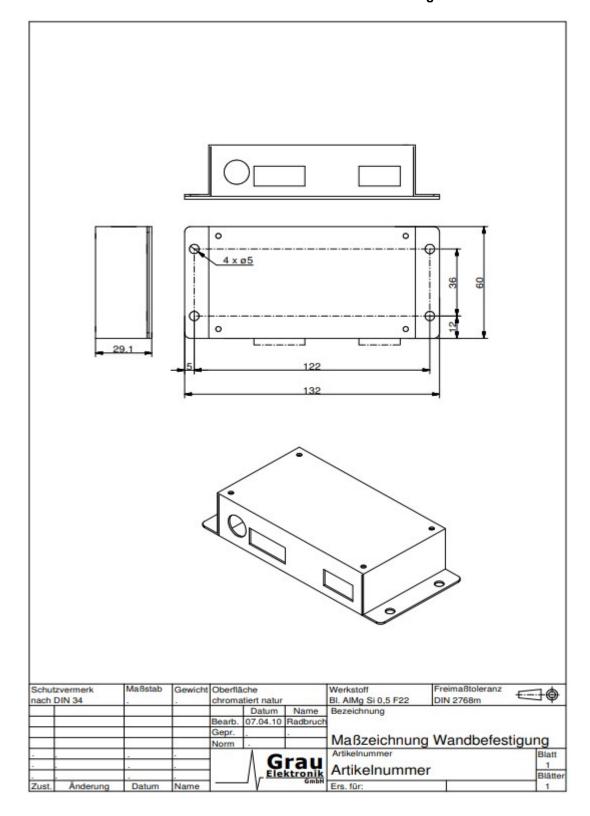
Badhausweg 14 76307 Karlsbad

Tel.: +49 0 72 48/92 58 0 Fax: +49 0 72 48/92 58 10

www.grau-elektronik.de info@grau-elektronik.de Erstelldatum: 22.06.2005

Rev. 1.4 03.02.22

Grau Elektronik


25 LPB 036 M24

Bestellnummer: 25 LPB 036 M24 □00 Auswahl

W = Wandmontage

H = Hutschienenmontage TS35

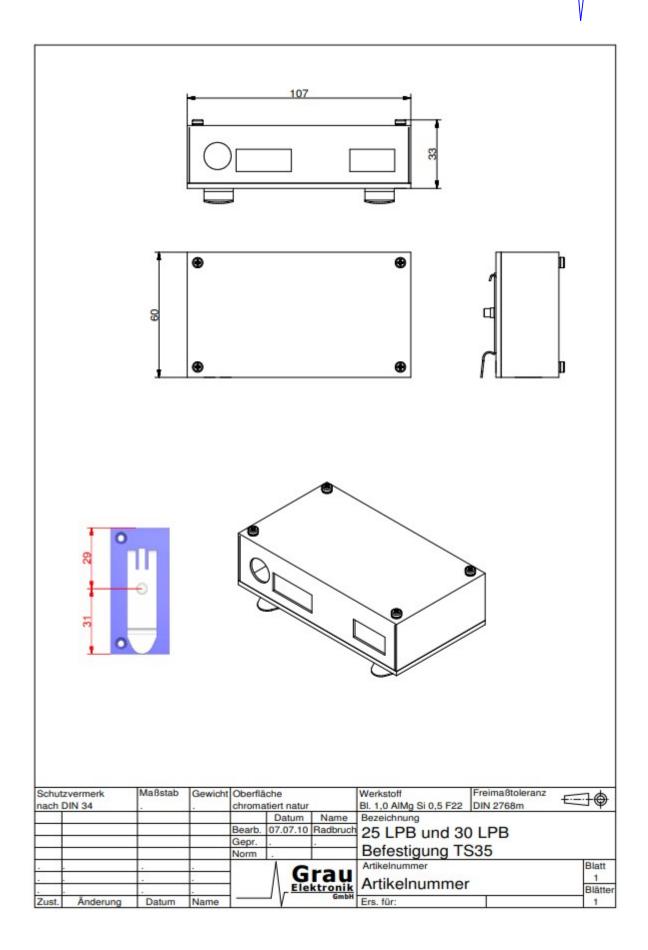
P = Platinenmontage

76307 Karlsbad

Badhausweg 14

Grau Elektronik GmbH

Änderung und Irrtum vorbehalten.


Tel.: +49 0 72 48/92 58 0 www.grau-elektronik.de Fax: +49 0 72 48/92 58 10 www.grau-elektronik.de

Erstelldatum: 22.06.2005

Rev. 1.4

Grau Elektronik GmbH

25 LPB 036 M24

 Grau Elektronik GmbH
 Badhausweg 14
 Tel.: +49 0 72 48/92 58 0
 www.grau-elektronik.de
 Rev. 1.4

 76307 Karlsbad
 Fax: +49 0 72 48/92 58 10
 info@grau-elektronik.de
 03.02.22

Änderung und Irrtum vorbehalten. Erstelldatum: 22.06.2005 Seite 4/4